
1 / 5

Netchex API Usage
Third parties can authenticate with external APIs using API Key or OAuth 2.0.

API Key
In each request to the Netchex API, include the following header:

Authorization: ApiKey {api-key}

Where {api-key} is the value of one of the assigned API keys.

OAuth 2.0
Based on Microsoft AD's OAuth 2.0 client credentials flow.

Get an Access Token

Before making a request to the Netchex API, request a token using your client ID and client secret from
Netchex's Azure AD tenant:

POST /{netchex-ad-tenant}/oauth2/v2.0/token HTTP/1.1 //Line breaks for
clarity
Host: login.microsoftonline.com
Content-Type: application/x-www-form-urlencoded

client_id={client-id}
&scope={netchex-external-api-scope}
&client_secret={client-secret}
&grant_type=client_credentials

{netchex-ad-tenant}: the Netchex AD tenant
Production value: 9a2eb4be-01ad-4337-8e3d-b92c8166ef2a

{netchex-external-api-scope}: the default scope for the Netchex external API
Production value: https://primaryauth.onmicrosoft.com/be3d5ddc-fed7-4042-a4b6-
29155e2ea60e/.default
Append /.default to the application ID URI of the Netchex external API registration

{client-id}: the value of your client ID
{client-secret}: the value of your client secret

A successful response looks like this:

{
 "token_type": "Bearer",

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow#first-case-access-token-request-with-a-shared-secret

2 / 5

 "expires_in": 3599,
 "access_token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1uQ19WWmNBVGZNNXBP..."
}

Use the value of the access_token property in subsequent requests.

Use an Access Token

In each request to the Netchex API, include the following header:

Authorization: Bearer {access-token}

Where {access-token} is the value of the access token.

Events
Netchex uses Azure Event Grid to send webhook events. Events are POSTed as JSON HTTP requests to your
selected endpoint with the following format:

[
 {
 "topic": string,
 "subject": string,
 "id": string,
 "eventType": string,
 "eventTime": string,
 "data":{
 object-unique-to-each-event-type
 },
 "dataVersion": string,
 "metadataVersion": string
 }
]

Property Type Description

topic string
unique identifier for this event
stream

subject string
unique identifier for the subject of
the event

id
string in .NET Guid format xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx

unique identifier for this event

eventType string
unique identifier for this event
type

3 / 5

Property Type Description

eventTime string in ISO 8601 format date and time of the event

data object
custom metadata object for the
event - see Event Types

dataVersion string
schema version of the event
message format

metadataVersion string
schema version of the event
metadata format

Event Message Authentication

You can authenticate the sender of events using a shared secret embedded in a query parameter.

The query parameter will be token, and the value of the parameter will be unique to your account. Check the
value on each POST to authenticate.

Endpoint Validation

Before receiving events, you must validate your webhook endpoint. At the time that the webhook endpoint is
registered, you'll receive a validation event with the following format:

[
 {
 "id": "",
 "topic": "",
 "subject": "",
 "data": {
 "validationCode": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "validationUrl": "https://validation-url.com/xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx"
 },
 "eventType": "Microsoft.EventGrid.SubscriptionValidationEvent",
 "eventTime": "",
 "metadataVersion": "1",
 "dataVersion": "1"
 }
]

To prove ownership of the endpoint, echo back the validation code in this format:

{
 "validationResponse": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
}

You must respond with the HTTP 200 response code.

4 / 5

Event Types

Each event type is listed below with its properties in list form below it.

Event type: companyPayrollInvoiced

payrollId: int32 as number
companyId: int32 as number

Event type: employeeAdded

employeeId: int64 as number
companyId: int32 as number

Event type: employeeBenefitCoverageEnded

employeeBenefitId: int64 as number
employeeId: int64 as number
companyId: int32 as number

Event type: employeeBenefitEnrolled

employeeBenefitId: int64 as number
employeeId: int64 as number
companyId: int32 as number

Event type: employeeBenefitUpdated

employeeBenefitId: int64 as number
employeeId: int64 as number
companyId: int32 as number

Event type: employeeDependentAdded

dependentId: int64 as number
employeeId: int64 as number
companyId: int32 as number

Event type: employeeDependentUpdated

dependentId: int64 as number
employeeId: int64 as number
companyId: int32 as number

Event type: employeeEnrollmentCompleted

employeeId: int64 as number
companyId: int32 as number

5 / 5

Event type: employeeTerminated

employeeId: int64 as number
companyId: int32 as number

Event type: employeeUpdated

employeeId: int64 as number
companyId: int32 as number

